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Abstract—We address the problem of universal decoding in
unknown frequency-selective fading channels, using an orthog-
onal frequency-division multiplexing (OFDM) signaling scheme.
A block-fading model is adopted, where the bands' fading coeffi-
cients are unknown yet assumed constant throughout the block.
Given a codebook, we seek a decoder independent of the channel
parameters whose worst case performance relative to a max-
imum-likelihood (ML) decoder that knows the channel is optimal.
Specifically, the decoder is selected from a family of quadratic
decoders, and the optimal decoder is referred to as a quadratic
minimax (QMM) decoder for that family. As the QMM decoder
is generally difficult to find, a suboptimal QMM decoder is de-
rived instead. Despite its suboptimality, the proposed decoder is
shown to outperform the generalized likelihood ratio test (GLRT),
which is commonly used when the channel is unknown, while
maintaining a comparable complexity. The QMM decoder is also
derived for the practical case where the fading coefficients are not
entirely independent but rather satisfy some general constraints.
Simulations verify the superiority of the proposed QMM decoder
over the GLRT and over the practically used training sequence
approach.

Index Terms—Decoding, fading channels, generalized likelihood
ratio test (GLRT), maximum-likelihood (ML) decoding, minimax
methods, orthogonal frequency-division multiplexing (OFDM),
quadratic minimax (QMM) decoders, universal decoding.

I. INTRODUCTION

I N this work, we consider the long-standing problem of dig-
ital communication over an unknown frequency-selective

fading channel. In many situations, neither the transmitter nor
the receiver are familiar with the specific channel over which
communication takes place, thus both the codebook and the
decoder must be selected without knowledge of the law gov-
erning the channel. An important example for such a situation
is found in mobile wireless communication, where variations of
the transmitter location in a dense urban environment leads to
constantly changing scattering scenarios, which in turn results
in a varying channel law.

In this paper, we assume that the transmission scheme is
given, and focus on receiver design. We consider slow fre-
quency-selective fading channels [3], and we further adopt the
simplified block-fading model, which assumes that the fre-
quency response of the channel remains unchanged throughout
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a block of symbols, and only changes from block to block. The
size of the block is usually selected to be proportional to the
coherence time of the channel.

Within a block, the channel will be assumed to belong to a
parametric family of channels. For instance, in the mobile wire-
less communication scenario, this family may include multipath
channels with some limits on the delay spread and on the paths
fading. Formally, if , are the input and the output of
the channel, respectively, then the channel transition probability
density function is assumed to belong to a parametric family

where is some index set. Such a family of channels is some-
times referred to as a compound channel [14]. Had the channel
law been known in advance for each block, max-
imum-likelihood (ML) decoding rule could have been applied
at the receiver to minimize the average probability of error.
However, since the ML decoding rule typically varies with the
channel parameter , it cannot be used in the compound channel
setting, and thus, decoding turns into a composite hypothesis
testing problem, where different hypotheses correspond to
different channels in the family .

Several heuristic approaches to this problem have been sug-
gested, where probably the most common is the use of a training
sequence. The basic idea is for the transmitter to send a known
sequence of symbols over the channel, allowing the receiver to
use its knowledge of this sequence in order to estimate the spe-
cific channel law. Once the channel law is estimated, the receiver
typically decodes the rest of the transmission by performing ML
decoding with respect to the estimated channel. The training se-
quence approach has several drawbacks. First, since the channel
estimation is imperfect and the decoding is performed using an
incorrect likelihood function, there is a mismatched decoding
penalty, which results in an increase in error rates [15] and a de-
crease in capacity [18]. Second, there is a throughput penalty,
since the training sequence carries no information. This penalty
is worse the longer the training sequence is compared to the
length of the data sequence. The throughput penalty may be es-
pecially acute in wireless communications, where the channel
parameters vary over time, thus requiring frequent retransmis-
sion of the training sequence in order to cope with the channel
variations. We thus see that increasing the relative length of
the training sequence results in throughput penalty, while de-
creasing it results in a more severe mismatch penalty. Due to
delay constraints, this tradeoff cannot always be balanced.

Another commonly used decoder for unknown parametric
channels is the generalized likelihood ratio test (GLRT), which
is a heuristic generalization of the ML decoder. The GLRT finds
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the ML estimate of the channel parameters for each codeword,
substitutes it into the likelihood function for that codeword, and
favors the codeword with the maximum likelihood. In general,
the GLRT does not claim optimality in any sense, and in some
cases there exists a decoder with better performance for all
channels in the family [7], which implies the GLRT is strictly
suboptimal.

A more systematic approach to the general problem of de-
coding in unknown channels is the universal decoding approach
[9], [14], [19]. Loosely speaking, a universal decoder for a para-
metric family of channels is a decoder independent of the spe-
cific channel in use, that nevertheless performs asymptotically
as well as the ML decoder tuned to that channel. There are
several different definitions of such universality. Universality
with respect to (w.r.t.) the random coding exponent was intro-
duced in [9], where a sequence of decoders was termed (strong)
random-coding universal if the exponential decay rate of its
error probability with increasing block length over a random
selection of codebooks converged to the random coding expo-
nent uniformly over the parameter set. The more stringent no-
tion of (strong) deterministic-coding universality refers to the
existence of a sequence of specific codebooks with increasing
block length, so that the exponential decay rate of the error prob-
ability for the sequence of decoders using these specific code-
books converges to the random coding exponent uniformly over
the parameter set.

Many families of channels admit universal decoding. Such
families include discrete memoryless channels (DMCs) [6], fi-
nite-state channels [17], [27], and Gaussian intersymbol inter-
ference (ISI) channels [9]. An example showing that the training
sequence approach is generally not universal was given in [9],
and a corresponding example for the GLRT was given in [14],
[16].

The aforementioned definitions of universality are asymp-
totic in their nature, and so the resulting universal decoders may
not be suited for use in communications systems with stringent
delay constraints. A somewhat different approach was presented
in [10], where optimal decoders were sought for any block
length , in the competitive minimax sense

(1)

where the nominator represents the error probability of the
decoder over the channel indexed by , and the denominator
represents the error probability of the ML decoder tuned to
that channel, both for either specific or randomly selected
codebooks. The error probability ratio represents the relative
loss in performance incurred by employing a decoder ignorant
of the channel in use, and therefore the proposed criterion seeks
a decoder whose worst case relative loss is minimal.

In the case where can be made small for a large
enough , the proposed decoder is universal in the sense
of attaining a probability of error approaching that of the ML
decoder on an exponential scale. However, demanding compet-
itive minimaxity w.r.t. the ML is sometimes too ambitious. A
less demanding criterion also suggested in [10] is

(2)

for some . Now, in the case where can
be made small for a large enough , the proposed decoder
is universal in the sense of attaining an error probability ap-
proaching a fraction , on an exponential scale, of the ML error
probability. Naturally, the maximal value of is sought, for
which this still holds.

In this work, we seek practical universal decoders for
unknown frequency-selective fading channels with additive
independent and identically distributed (i.i.d.) Gaussian noise.
For simplification, we use the orthogonal frequency-division
multiplexing (OFDM) signaling scheme, which has gained
much attention as an effective multicarrier technique for wire-
less transmissions over such channels [12]. By using the fast
Fourier transform (FFT) and its inverse (IFFT) and adding a
cyclic prefix to each data block, OFDM converts a frequency-
selective fading channel with additive i.i.d. Gaussian noise into
parallel independent subchannels (bands) with additive i.i.d.
Gaussian noise [25]. Indeed, using OFDM signaling results in a
rate penalty that is proportional to the ratio between the length
of the cyclic prefix and the size of the data block. Despite that,
since the length of the cyclic prefix is determined by the delay
spread of the channel, and the data block size is practically
limited by the coherence time of the channel, then if the delay
spread is small relative to the coherence time, this penalty may
be negligible.

Using OFDM greatly simplifies the equalization stage, when
the fading coefficient are known to the receiver. When the fading
coefficients are unknown, they are traditionally estimated before
or while decoding. There has been extensive work on OFDM
channel estimation, both training based [1], [5], [23] and blind
[11], [20]. GLRT based joint channel estimation and decoding
was considered as well [4].

As these methods suffer from several disadvantages men-
tioned earlier, we pursuit another direction, and consider the
problem within the framework of universal decoding. Focusing
on receiver design, we assume that the codebook is given, and
so it is only natural to adopt the competitive minimax criterion
given in (2). However, since we are interested in a fixed code-
book, we take a somewhat different approach then [10], and
consider the asymptotic behavior of the minimax solution in the
limit of high signal-to-noise ratio (SNR), rather than for an in-
creasing block size. That is, we seek the maximal value of (and
the corresponding decoder) for which the minimax solution con-
verges when the SNR is taken to infinity. We note, however, that
the performance of the decoders typically coincides with their
asymptotic behavior even for moderate SNR levels, and there-
fore our analysis is not limited to the asymptotic regime but is
valid in the practical regime as well.

There is another important point to be made regarding the
applicability of the above minimax approach in a practical con-
text. A minimax solution is pessimistic by nature, since it is de-
rived by considering a worst case scenario. However, note that
our minimax criterion is essentially a regret criterion, since it
seeks a decoder whose worst case loss w.r.t. the ML is minimal,
thus minimizing the regret for not knowing the channel param-
eters. Consequently, the worse the channel the less we expect
from our decoder, hence a situation where our performance is
dominated by the worst channel is avoided. In fact, the perfor-
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mance is actually dominated by the typically good channels for
which the decoder performs most poorly compared to the best
that could be attained had the channel been known. It should
also be pointed out that the GLRT is asymptotically minimax
in a sense of minimizing the worst case error probability itself
(which corresponds to ) rather than the regret [10], thereby
classifying it as a more pessimistic decision rule.

The outline of the paper is as follows. Section II presents
the OFDM system model, introduces the notions of pairwise
decoding and quadratic decoders, and describes the ML and
GLRT decoders for the OFDM setting. In Section III, the
SNR-asymptotic minimax criterion for universal decoding in
frequency-selective fading channels is introduced. This crite-
rion seeks optimal decoders in a minimax sense out of a given
family of decoders, and for a family of quadratic decoders, the
optimal decoder is termed a quadratic minimax (QMM) de-
coder. The main results of the paper are presented in Section IV,
where a specific design of the QMM decoder is described
in detail. It turns out that in order to end up with a practical
decoding scheme, suboptimal design assumptions have to be
taken. The resulting suboptimal QMM decoder is intuitively
appealing, as demonstrated by some specific implementation
examples given in Section V. In Section VI, the proposed
decoder is shown to outperform the GLRT in the minimax
sense. Section VII provides simulation results for the QMM
decoder and compares its performance to that of the GLRT and
the training sequence approach. A summary and discussion of
future research is given in Section VIII.

II. OFDM: SYSTEM MODEL AND DECODERS

We consider an OFDM signaling scheme over an unknown
frequency-selective fading channel. It is assumed that there are

frequency bands, where each band suffers an unknown com-
plex fading and an additive i.i.d. Gaussian noise. The FFT/IFFT
and the cyclic prefix associated with the OFDM signaling
scheme will be disregarded here, being a constant part of the
encoding/decoding procedure. Adopting a block-fading model,
we assume that the unknown fading coefficients are constant
throughout a block of consecutive time points. We also
assume that a given codebook of codewords is used, where
codewords are selected with equal probability. Each codeword
occupies a single block, and can be therefore represented by an

matrix. It should be noted that this model is not limited
merely to the OFDM setting, but rather fits any system that
can be converted into parallel channels with unknown gains.
For instance, a narrowband system with an -block-fading
unknown multiplicative gain fits this model well by considering
codewords that span consecutive blocks.

Specifically, for a codebook of codewords
, the output of the channel when

transmitting the th codeword is

where the diagonal elements are the unknown complex
fading coefficients, is the complex-valued component of
the th codeword transmitted on band at time point , and

the elements of the matrix are i.i.d. complex normal random
variables. For simplicity of exposition, we will consider for the
rest of the paper a real OFDM setting, which corresponds to a
real-valued codebook, real fading coefficients, and normal dis-
tributed noise. However, all the results derived herein are also
valid for complex OFDM channels with minor modifications;
see [22] for details.

Denote by the transpose of the th row of the th code-
word. We define the (transmitted) power of the th codeword in
the th band to be

and the correlation coefficient between codewords and on the
th band to be

Since the fading coefficients are unknown, a reasonable re-
quirement for the codebook is that no pair of codewords is co-
linear in any of the bands. Otherwise, the codewords are indis-
tinguishable in that band, since even without the additive noise
observations may stem from any of the two codewords under
different fading values. Therefore, we will assume throughout
this work that the correlation coefficients satisfy

(3)

which is equivalent to the requirement above.
Another useful representation of this channel is derived by

stacking the rows of each matrix into a column vector. If we row-
stack the rows of into a column, we get a column
vector, which is denoted by . Let and be constructed by
a similar row stacking of the noise matrix and the channel
output matrix , respectively. We get

where is the identity matrix, and stands for the
Kronecker matrix product.

A. Pairwise Decoding and Quadratic Decoders

Adopting the row-stacked representation, a general decoder
for the OFDM setting above is a mapping

In general, the decoder may or may not be dependent on the
value of the fading coefficients. We will naturally be interested
in decoders that do not depend on the fading values, since in our
setting these values are assumed unknown.

Associated with a decoder are the decision regions for
each codeword , defined as

We will further assume here that each decision region contains
its own codeword for all fading values, i.e.,

(4)

This is a detectability property which guarantees a correct de-
cision when no noise is present. There is no reason to consider
decoders that do not satisfy that property, since their probability
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of error is bounded from below for some of the channels, and
can never approach zero for an increasing SNR.

The probability of error associated with a decoder for a spe-
cific fading coefficients vector is denoted by . Since
a precise analysis of for general decoders is usually
hard, we will resort to high SNR approximations. We define the
decoder’s power error exponent as the asymptotic slope of the
error probability as a function of the SNR on a logarithmic scale

whenever the limit exists. As this quantity is easier to determine,
we will later use it instead of the error probability. Note that
the error probability typically decreases exponentially for even
moderate SNR levels, and therefore using the power error expo-
nent in lieu of the error probability does not limit our discussion
to the asymptotic SNR regime, but rather renders it valid in the
practical SNR regime as well.

Every decoder can be decomposed (though not uniquely)
into pairwise decoders that decide only between codewords

and

The essence of this decomposition is that instead of applying
the decision rule and directly decode one codeword out of

, decoding is performed in pairs, and the decoded codeword
is the one favored by all its pairwise decoders. If no such code-
word exists, then decision is made according to some inconsis-
tency resolving rule. Practically, one can first decide between
the first and second codewords, then take the “winner” and de-
cide between it and the third codeword, and so on, until only
one codeword survives. That way, a minimal number of deci-
sions is made, and inconsistencies are inherently resolved. This
implementation of pairwise decoding will be used throughout.
Decoders that uniquely assign a metric to different codewords
(such as the ML and the GLRT) can be decomposed into pair-
wise decoders simply by comparing pairwise metrics. Inversely,
a decoder can also be defined by stating its pairwise compo-
nents (and possibly an inconsistency resolving rule).

A decoder will be called a quadratic decoder if there exists
a set of symmetric matrices so that can be decomposed
into pairwise decoders

arbitrary o.w.

Notice that there is an implicitly assumed dependence between
the matrices and , needed to ensure that the decoders

and describe the same decoding rule. Specifically, it is
assumed that for every , there is some positive constant so
that . The family of quadratic decoders, defined
via the matrices of their pairwise components, will be of a
special interest in the following sections.

For a given decoder , a decomposition , a specific value
of the fading coefficients vector , and two codewords , define
the pairwise error probability as

decoded transmitted

Similarly to the decoder’s power error exponent, we define the
pairwise power error exponent as

whenever the limit exists. Notice that generally
.

For a constant number of codewords , the decoder’s error
probability is dominated by the worst pair, and so the power
error exponent can easily be shown to be equal to the minimal
pairwise exponent

(5)

Associated with any pairwise decomposition are the pairwise
separating surfaces defined as

where the bar stands for the closure operator. For instance, a
pairwise separating surface of a quadratic decoder is given by

For a specific value of the fading coefficients , the pairwise
minimal distance for codewords , is defined as

and the decoder’s minimal distance for the channel is defined
to be

Notice that generally , since in general one
codeword may be closer to the separation surface than the other.
The ML decoder, whose decision rule depends on the knowl-
edge of the specific channel realization, is the only decoder for
which these pairwise minimal distances coincide for all fading
values.

Under some general conditions on the separating surface, and
since the noise is assumed to be Gaussian i.i.d., it is easy to
verify that there exist a simple relation between the pairwise
power error exponent and the pairwise minimal distance, given
by

(6)

see [22] for details. Specifically, relation (6) holds for quadratic
decoders and for the ML decoder. Using (5), the decoder’s
power error exponent is similarly related to the decoder’s
minimal distance

(7)
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B. The ML and GLRT Decoders

The ML decoder for the OFDM setting is defined by

where ties are broken arbitrarily. Since the noise is additive
Gaussian and i.i.d., the ML decoder can be stated as a minimum
distance decoder

A straightforward decomposition of the ML decoder to pair-
wise decoders is achieved simply by comparing distances
of pairs. The separating surface for this decomposition is
therefore the locus of all points with equal Euclidian distance
to codewords and , which is a hyperplane. Consequently, the
pairwise error exponent for the ML decoder is given by

and the power error exponent for the ML decoder is

(8)
The corresponding probability of error for the ML decoder will
be denoted by .

Since the ML decoder is tuned to a specific channel, it cannot
be used for decoding when the channel parameters are unknown,
and have no statistical model. In that case, a reasonable candi-
date for a decoder may be the GLRT, which is a heuristic gen-
eralization of the ML. The idea is to replace the parameters
with their respective ML estimates under each codeword, and
then perform ML decoding. Therefore, the decoding rule of the
GLRT is

where ties are broken arbitrarily. In the OFDM setting, a
straightforward calculation shows that the GLRT has the fol-
lowing compact and comprehensible decision rule [22]:

(9)

That is, one can calculate a GLRT metric for every codeword by
projecting the observation onto the direction of that codeword in
each band separately, and summing the squares of the distances.
The decoded codeword would be the one with the largest sum.
Again, a natural decomposition to pairwise decoders is avail-
able by comparing pair metrics. Notice that the GLRT does not
take into account the power of the codeword in each band, and
considers only its direction. This is an inherent weakness of the
GLRT as we shall later see.

It is easily verified from (9) that the GLRT is a quadratic
decoder under the pairwise metrics decomposition. The power
error exponent for the GLRT is therefore related to the minimal
distance according to (7), and it is discussed in Section VI.

III. UNIVERSAL MINIMAX DECODERS FOR FADING CHANNELS

In this section, universal decoding based on the competitive
minimax approach will be suggested for unknown frequency-
selective fading channels, assuming the OFDM block-fading
model. This approach is based on the work presented in [10],
with two main differences: First, a fixed codebook is assumed
and the optimal decoder is considered in the limit of high SNR
rather than in the limit of increasing block size. This is done by
using the power error exponents in lieu of the error probability
in the minimax criterion, and allowing unlimited fading power.
Second, unlike [10] where the decoder’s selection is unrestricted
and therefore the optimal decoder is hard to find, only candi-
date decoders belonging to some given family are considered.
While this may lead to some loss in performance, the family is
chosen so that determining the optimal decoder becomes more
tractable. Specifically, given a family of decoders, we seek an
optimal decoder in the competitive minimax sense

(10)

Now, in the limit of high SNR, the minimax criterion above
may be well approximated by considering only the exponential
behavior of the error probabilities. The minimax criterion can
now be stated in terms of the power error exponents

(11)

Again, it should be emphasized that despite the asymptotic ap-
proach, our analysis is typically valid even for moderate SNR
levels, where the behavior of the decoders usually coincides
with their asymptotic behavior. Moreover, since our criterion
minimizes the worst case regret rather than the worst case error
exponent, it is more optimistic by nature and is not dominated
by the worst channel.

Considering (11), it can easily be seen that the maximization
will diverge to infinity for any decoder that has a power error
exponent inferior to that of the ML even for a single value of
the channel fading vector. Since the ML decoder is the decoder
with the minimal probability of error, it is unlikely that a decoder
ignorant of the fading will match its power error exponent for
all values of , for a fixed-sized codebook. Consequently, we
modify the minimax criterion (10), in the same manner sug-
gested in [10], and demand optimal minimaxity relative to a
fraction of the ML power error exponent

(12)
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for . Again, the above can be approximated at high
SNR by

A decoder that is optimal by this criteria, must achieve a power
error exponent at least as good as a fraction of the ML expo-
nent, uniformly over all fading values. For a high value of , such
a decoder may not exist at all, since the supremum will always
diverge. For a low value of , there may be many optional de-
coders. Therefore, we would be interested in the maximal value
of for which such a decoder exists

(13)
and the decoder we seek is one attaining that maximal fraction

of the ML exponent. Another useful expression for can be
obtained by defining as the guaranteed fraction of the ML
exponent attained by a decoder

and taking as the supremum of over the decoders

(14)

In the rest of the paper we focus on the case where is a family
of quadratic decoders. The decoder attaining is then termed
the quadratic minimax (QMM) decoder w.r.t. , and it is dis-
cussed in detail in the next section.

IV. THE QMM DECODER

We are now ready to derive the main results of the paper, as
we address the problem of QMM decoding with the goal of es-
tablishing a practical decoding scheme in mind. The outline of
the section is as follows. In Section IV-A, we first show that it
is sufficient to consider decoders whose pairwise decision rule
takes into account only the projection of the observation vector
onto the subspace spanned by the two corresponding codewords
in each band. This is explained intuitively by asserting that any-
thing orthogonal is noise. Such pairwise decoders are each de-
pendent on the selection of a symmetric matrix per band.
To further simplify the analysis, at the cost of some possible
performance degradation, we restrict our attention to a family
denoted by , which includes the GLRT, and for which the

matrices above are diagonal. In Section IV-B, we de-
rive a lower bound for the power error exponent of decoders
in , since the exact exponent does not have an analytic ex-
pression. It is further shown, that for the sake of maximizing
that lower bound, it is sufficient to consider a family
of decoders with pairwise components each dependent
only on a single weight parameter . The decoding rule for
decoders in is described in Section IV-C. The task of deter-
mining the optimal weights is addressed in Section IV-D. A
lower bound on the guaranteed fraction of the ML exponent

is derived using the power error exponent bound, and the proce-
dure for selecting the weights so that this bound is maximized
is described therein. Section IV-E concludes our discussion of
QMM decoding by extending the decoding scheme to the prac-
tical case where the fading coefficients are known to be related,
and provides two illustrative examples for that case.

A. Specifying the Family of Decoders

When making a pairwise decision for some pair of code-
words, it is only sensible to take into account, in each band, only
the projection of the observation onto the subspace spanned by
those codewords in that band. This notion is now made precise.

Let , be a pair of codewords, and ,
the transpose of their respective rows. As we have mentioned
in Section II, we consider codebooks that are “suited” for uni-
versal decoding by satisfying condition (3), which means that

, are not colinear for any . Let be a set of
orthonormal vectors constituting a basis for the orthog-

onal complementary subspace of . Now, define
the block-diagonal matrix

where the matrices on the diagonal are

For the sake of brevity, we will omit the subscripts ,
throughout the rest of this section, and use , instead of

, . Condition (3) guarantees that the matrix is
invertible, hence, the observation vector can be represented
w.r.t. by

(15)

Notice that the first two elements of correspond to the projec-
tion of the observation onto the subspace spanned by the two
codewords in the first band, followed by elements corre-
sponding to the orthogonal (noise) subspace in that band. Then,
the next two elements correspond to a similar projection in the
second band, followed by elements of noise, and so forth.
We now have the following result.

Theorem 1: For any pairwise decoder represented by a
symmetric matrix , there exists another pairwise decoder
represented by a symmetric matrix

(16)

where is a block-diagonal matrix of the form

...
...

...
. . .

...

so that has a minimal distance equal or higher than that of
uniformly for all fading values.
Proof: See the Appendix.
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From Theorem 1 it follows that for the sake of finding the
QMM decoder for the family of all quadratic decoders, it is suf-
ficient to consider only the family of decoders whose pairwise
components are of the form given in (16). Each pairwise decoder
in that family is dependent on the selection of a symmetric
matrix per band. For simplification, we shall only consider de-
coders with pairwise components for which this matrix is diag-
onal, i.e., , and we define to be the family of all
such decoders. In the case of flat fading (single band, ), it
can be shown that this restriction incurs in no loss of generality
[22], but this is not necessarily true for .

We now turn to find the power error exponent for decoders
from the family . For that matter, the pairwise minimal dis-
tances for each pair should be determined, depending on the se-
lection of the matrix .

The pairwise minimal distance of a pairwise decoder
is given by the solution of the following optimization

problem:

s.t.

where represents the pairwise decoding rule, and

Using the transformation (15) and the structure of the matrix
given in (16), the optimization problem can be stated as

(17)

Taking the derivative of the lagrangian w.r.t. and rearranging
the terms, we get

(18)

where is the Lagrange multiplier. In order to find we have
to substitute into the constraint and we have

which results in a degree equation in that generally
cannot be solved analytically, unless some unique situation
occurs (such as per-band orthogonal codewords, for instance).
Consequently, the minimax problem (14) cannot be stated
explicitly. To allow further analysis, we replace the power error
exponent in the minimax problem with a lower bound which
we now derive.

B. Bounding the Power Error Exponent

We now turn to lower-bound the power error exponent for
decoders in the family by bounding the pairwise minimal
distance. First, we transform the optimization problem (17) into
a problem we can solve explicitly. Define a matrix ,
for some diagonal matrix . Now consider

s.t.

which is equivalent to

s.t. (19)

For convenience of further calculations, let for
some diagonal matrix . The pairwise decoder is therefore

assumed to be represented by a matrix ,
where the matrices , may both depend on , . Notice that
selecting , for automatically defines a corresponding
selection for . Now (19) becomes

s.t. (20)

We will refer to the solution of the modified optimization
problem above as the pairwise modified distance.

We now find the relation between the pairwise minimal dis-
tance and the pairwise modified distance, and for that matter we
remind the reader of some facts from linear algebra, regarding
the norm variations of vectors when multiplied by a matrix [13].
For any matrix , the matrix lower bound and
the (induced) matrix norm are defined as

and the ratio is referred to as the condition number of
the matrix. Obviously, for any vector we have

and, therefore, the matrix lower bound and the matrix norm pro-
vide lower and upper bounds on the norm variations of a vector
multiplied by a matrix. The following lemma states a known re-
lation between these quantities and the singular values of the
matrix.

Lemma 1: For any matrix , and corre-
spond to the minimal and maximal singular values of , respec-
tively.

In our context, we have

and, similarly, . So, for every we
have

minimizing over the separation surface

we end up with

(21)

Equation (21) relates the pairwise minimal distance to the pair-
wise modified distance, in terms of lower and upper bounds pro-
vided using the matrix lower bound and matrix norm of .
In light of that, we wish to find a matrix so that the matrix

has a minimal condition number, thereby mini-
mizing the upper-to-lower bound ratio.

In order to state our next results and to make further calcula-
tion more clear, we will denote the diagonal elements of by

, where and . That is,
for and running, we get the first elements on the
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diagonal, for we get the next elements, and so forth.
Respectively, we will mark the elements of the vector by ,
and of the diagonal matrix by .

Theorem 2: Consider the class of all matrices of the form
for some diagonal matrix . The matrix

where the diagonal elements of are given by

has a matrix lower bound , and attains the minimal
condition number in that class.

Proof: See the Appendix.

After the optimal bounding matrix with given
above has been determined, we turn to explicitly find the pair-
wise modified distance by solving the optimization problem
(20) substituting for

s.t. (22)

where is any diagonal matrix selected so that the resulting
pairwise decoder satisfies the detectability condition (4). From
(21) we have

and so can be used to lower-bound the pairwise minimal
distance (and consequently, to lower-bound the pairwise power
error exponent). Generally, of course, the matrix is depen-
dent on the selection of diagonal elements. Since our pair-
wise decoders consider only projections onto the codewords’
subspaces in each band, we can narrow this selection down to

elements. As it turns out, a further reduction is possible, so
that the matrix is only dependent on the selection of a single
parameter.

Theorem 3: For any selection of the matrix , there exists
another selection of the form

o.w.

for some , for which both and are uniformly
increased. Furthermore, for such a selection, the pairwise mod-
ified distance is given by

Proof: See the Appendix.

We thus see that if we intend to use instead of
, it is sufficient to consider the family of

decoders whose pairwise components are of the form
, and are each dependent on a single parameter

. Notice that there is an inherent redundancy in the weights,
and is implicitly assumed to be equal to , for the pairwise
decoders and to describe the same decoding rule. Every

decoder is, therefore, determined by a set of
weights .

Corollary 1: The power error exponent of a quadratic de-
coder is lower-bounded by

(23)

Using Corollary 1, it is now straightforward to derive a lower
bound for , the guaranteed fraction attained by a decoder

, by replacing the power error exponent with its lower bound

(24)

where the ML exponent is given in (8). By definition,
the QMM decoder for the family (and ) is the one max-
imizing . In what follows, we shall find a decoder
maximizing the lower bound instead, as we lack an explicit
expression for . Although being suboptimal, this decoder will
still be referred to as the QMM decoder, and its guaranteed frac-
tion of the ML exponent will still be denoted , in order to avoid
to many notations. As we shall see in Section IV, there exists a
simple procedure for finding the optimal weights for that
decoder, and it is described therein. But first, we describe the
QMM decoding procedure, assuming the optimal weights are
given.

C. QMM Decoding Procedure

As described above, the decoder we propose depends on a set
of optimal weights , which maximize the lower bound of (24)
over the family . These optimal weights can be found offline,
and the procedure for that is given in the next subsection.

We now describe the decoding procedure assuming that
are given. Decoding is pairwise based, therefore, at each

step a decision is made regarding two codewords, where the
favored codeword survives and is then confronted with a new
yet untested codeword. The last codeword to survive is the
one declared as decoded. For some pair of codewords and ,
the pairwise decision rule is as follows. First, the observation
vector is projected onto the subspace spanned by the two
codewords in each band separately. Then, the projection is
expressed as a linear combination of the two codewords in that
band. Specifically, let be the observation vector in band
and let be its projection, then

The codeword is favored over the codeword if

(25)
where is the transmitted power of codeword in band ,
and is the correlation coefficient for codewords and in
band .

As for complexity, observe that apart from the preliminary
step of finding the optimal weights which can be preformed
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a priori, the QMM decoder has a computational complexity
comparable to that of the GLRT. The only problem may be
memory, since there are many weights that need to be stored for
decoding. In some cases, memory consumption may be reduced
at the cost of some online weight calculation, as mentioned in
the next subsection.

D. Optimal Weights Selection

We return to the problem of determining the optimal weights
to be used in the QMM decoding procedure. Precisely, we

are interested in solving the following minimax problem:

(26)

where denotes the maximal lower bound attained by a
decoder solving the problem. We would be first interested in
finding an expression dependent on the parameters for the
infimum, i.e., for , and then maximize it w.r.t. those param-
eters. Unfortunately, since this involves finding the infimum of
a ratio of two rather complicated functions, there is little hope
of finding an analytical expression for in general. However,
there is a way around this.

For a given decoder, the channels for which the infimum
in the right-hand side of (26) is attained will be referred to as
critical channels. In these channels, the quadratic decoder has
the worst value of the power error exponent bound relative to the
ML exponent, and if happens to be a critical channel, then the
lower bound is just the ratio . Therefore, for
any specific decoder, the lower bound we seek can be found by
determining any one of the critical channels. Generally, the crit-
ical channels are difficult to determine in closed form, and they
may vary from one quadratic decoder to another, as they de-
pend on the selection of the weights . However, as we shall
now show, there exists a finite set of channels independent of
the weights, that always includes at least one critical channel.
In order to show that, we need some definitions related to poly-
hedral sets and functions [2].

A set is said to be a polyhedra if

for some and . The graph of a function
is a set in defined as

graph

The function is said to be a polyhedral function if graph
is a polyhedra in . An extreme point of a polyhedral func-
tion is defined as a point in for which the corre-
sponding point in graph has no line segment passing through
it that is fully embedded in graph .

Now, considering only vectors with unity norm, introduce
the following change of variables:

(27)

hereby reducing the dimension of the problem to . With a
slight abuse of notations, we shall refer to the ML power error
exponent and to the lower bound for the power error exponent

of the quadratic decoder as and , respectively. The
domain of interest for the error exponent expressions will be the

dimensional simplex defined by

(28)

It is easily seen that both the ML power error exponent
and the lower bound are polyhedral functions over the
simplex , being the minima of affine functions (hyperplanes).
With that in mind, we can now state our result.

Theorem 4: For any selection of weights , the finite set of
the extreme points of over the simplex includes at least
one critical channel.

Proof: See the Appendix.

Theorem 4 asserts that for a given codebook, the guaranteed
fraction of the ML exponent achieved by any quadratic decoder
from the family can be found by searching over a finite a
priori determined set of channels, independent of the decoder
itself. Denote by the extreme points of the ML
exponent. Then the bound is given by

(29)

and we now seek weights that maximize it. Denote by
the channels corresponding to the extreme

points, and define the function

Now using (23) and (29) we have

but the power fractions, defined as

(30)

do not depend on the weighting, and can be calculated a priori.
So finally the bound can be expressed as

(31)

and we seek the weights maximizing it, and thus at-
taining .

Proposition 1: The weights

maximize the lower bound for the guaranteed fraction of the ML
exponent .

Proof: See the Appendix.
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Corollary 2: The lower bound for attained using the
weights in Proposition 1 is

Summarizing the results of this subsection, the optimal
weights maximizing the lower bound for are found
through the following procedure.

1. Find the extreme points of the ML power error exponent
given in (60) and (61) over the set , which is either the
simplex of (28) or the set defined in the next subsection
in (35), derived by utilizing a priori known relations be-
tween the fading values. For an extensive reference on ef-
ficient extreme points enumeration algorithms, see [8].

2. Calculate the power fractions using (30) and the set
of extreme points found in step 1.

3. Find the optimal weights using Proposition 1.
Notice that if the number of ML extreme points is relatively

low, it may be preferable to calculate the weights online while
decoding, to avoid storing them in memory.

E. Utilizing Relations Between Fading Values

In some cases, a priori information regarding the interdepen-
dency of the fading values may be available, and can be incor-
porated into our QMM decoding scheme. Specifically, assume
it is known that the fading vector , rather than taking arbitrary
values in , takes only values in a constraint set . In
this case, the minimax optimality criterion (12) will become

(32)

Under some conditions on the set , a suboptimal QMM de-
coder for the modified optimality criterion above can be derived
using arguments similar to those presented in the previous sub-
sections. First, in order for our SNR-asymptotic approach to
apply, the set must be scale invariant, so that any channel in it
can be found with all possible gains, i.e.,

(33)

Now, define the set

(34)

We can now go through the same sequel of the previous subsec-
tions, with the infimum taken over the set instead of over all

. The maximal lower bound for the guaranteed fraction
of the ML power error exponent for a decoder over the set
is then

and again we encounter the problem of determining the in-
fimum. This time, the channels attaining it will be termed
constrained critical channels. Using the same change of vari-
ables as in (27), define the set

(35)

and a result similar to the one presented in Theorem 4 is valid,
under a further condition on the set .

Proposition 2: Let be a constraint set satisfying (33), for
which the corresponding set defined in (35) is a polyhedra.
Then for any selection of weights , the finite set of the ex-
treme points of over includes at least one constrained
critical channel.

Proof: Similar to the proof of Theorem 4, where being
a polyhedra guarantees that , are polyhedral functions
over .

It is now straightforward to see that the QMM optimal
weights for the constrained case can be found in a manner sim-
ilar to that of finding the optimal weights in the unconstrained
case, where the only difference is that the set defined in (35)
replaces the simplex of (28) as the set over which ML extreme
points are sought.

Example: Let be some specific fading vector, and let the
constraint set be defined as

That is, the channel is known to be described by the fading
vector up to an unknown gain factor. In this case, assuming
without loss of generality that , we have ,
and , where . The
set is a polyhedra (since any set of a finite number of points
is a polyhedra), and therefore Proposition 2 applies. Obviously,
the only extreme point of the ML exponent over is the point

, and using the results of the previous subsection, the optimal
weights are given by

Notice that this example is essentially equivalent to a flat-
fading channel where the number of bands is , since the
attenuation of each band here is known, up to a common scaling
factor. An illustrative flat-fading channel example will be given
in the next section.

For the complex OFDM setting, condition (33) for the con-
straint set becomes

(36)

and

(37)

Now assume, for instance, that the channel in use suffers from a
multipath distortion with a maximal time spread of , and that
the interval between adjacent OFDM bands is . If

, then adjacent frequency bands suffer fading that is not en-
tirely independent, and an appropriate constraint set can be
found and incorporated into the QMM decoding scheme, as
demonstrated in the following example.

Example: Consider a two-path propagation channel, mod-
eled as a discrete time channel with an impulse response
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where is the unknown delay between the paths, and , are
the unknown path gain coefficients, assumed for simplicity to
be real. We further assume that the channel has a bounded delay
spread, so that for some . Therefore, the channel
can be converted into the complex OFDM setting with a block
length of using a cyclic prefix and -point IFFT/FFT.
The fading coefficients are then given by

We now establish a dependence between different fading co-
efficients, so hopefully a proper constraint set can be found.

where a change of variables has taken place and

(38)

To find the permitted range of values for the ratio let

Rearranging terms results in the quadratic equation

A necessary and sufficient condition for the equation to have a
solution is

Solving for provides us with the range of values we were
looking for

where is given in (38). Define

Now, define the constraint set to be the set of all fading vectors
satisfying

Fig. 1. QMM for simple fading.

This set obviously complies with the scale-invariance condition
(36). The corresponding set is easily verified to be the set of
all vectors satisfying the inequality conditions

where for convenience we define . Since
is obviously a polyhedra, the set defines a proper con-

straint set satisfying the conditions of Proposition 2, and the
QMM decoding scheme for the constrained case may be applied
accordingly.

V. SOME SIMPLE EXAMPLES

In some cases, the weights of the QMM decoder can be
explicitly determined without any numerical effort, as demon-
strated in the following examples.

Example 1: Consider a simple flat-fading channel
with two codewords as depicted in the Fig. 1. In this case, any
channel is a critical channel, since the simplex is zero-dimen-
sional. Therefore, the optimal weight is just

and we decide in favor of the first codeword if

which reduces to

where , are the coefficients for the representation of the ob-
servation as a linear combination of the two codewords. The
resulting decision regions’ boundaries are depicted by straight
lines through the origin in Fig. 1. As can be seen, the minimal
distance here is attained by both the codewords simultaneously,
uniformly for all fading values. The resulting QMM decoder in



SHAYEVITZ AND FEDER: UNIVERSAL DECODING FOR FREQUENCY-SELECTIVE FADING CHANNELS 2781

this case is similar to the one derived for this example through
a somewhat different reasoning in [10].

Notice that for orthogonal codewords , the matrix
of Theorem 2 is just the identity matrix, and so the bound

(23) is tight and the proposed decoder is an optimal QMM de-
coder for the family . Actually, in this simple setting, it can
be shown that the proposed decoder is also a QMM decoder for
the family of all quadratic decoders [22]. Observe further, that
by setting the weight to unity, we end up with the GLRT, and
since the optimal weight in this case is the codeword’s power
ratio, the GLRT turns out to coincide with the QMM (and thus
to be optimal in the minimax sense) only when the codewords
have equal power. This is due to the fact that the GLRT is insen-
sitive to power, and takes into account only direction.

Example 2: Consider a OFDM channel with two code-
words

orthogonal on each band separately. In this case, the matrix
of Theorem 2 is again just the identity matrix, and therefore the
lower bound in (23) is tight, and our proposed decoder is an
optimal QMM decoder for the family . The simplex here is
the segment of the real line, and since there is only a single
pair of codewords in the codebook, the ML extreme points are
the two extreme points of this segment corresponding to the
channels , , and the power fractions are
given by

so

Notice again that by setting we end up with the GLRT,
and therefore,

with equality attained only when , i.e., only when both
codewords have equal power in both bands. It is therefore seen
that even if the two codewords have an equal total power, the
GLRT is not guaranteed to coincide with the QMM decoder.

Example 3: Consider a repetition code, where in the first
band we transmit symbols from an -PAM constellation

over the time points, and the other bands are
just exact replicas of the first. We assume that the codewords
in the first band are unrestricted as long as no two codewords

are colinear. The ML exponent is dominated by the pair of
codewords that differ in a single position by a value of two, and
therefore,

and by the change of variables (27) we get

so the only extreme points of the ML exponent over the simplex
are at the vertices of the simplex, that is, for some

or , which corresponds to a single nonzero fading
coefficient. Therefore, we have

and so

where the last transition is due to the repetition. Finally

so the weights for the QMM decoder are just the energy ratio of
the codewords in the first band (or in any other band).

Example 4: Consider an uncoded transmission in all the
bands using -PAM constellation, where again the symbols in
each band are not allowed to be colinear, to make the codebook
suited for universal decoding. The ML exponent in this case is
dominated by codewords that differ only in a single band at a
single time point, by a value of two. That is,

where for convenience we define and take
the minima for . We now claim that the only
extreme point of the ML exponent is the flat-fading channel

. It is obvious that is an extreme
point since the ML exponent attains its maximal value at
this point. To prove that it is the only extreme point, assume
that some is an extreme point, and further assume it is
not a simplex boundary point. Then for some band

and there exists some small enough so that
for some band . Therefore, there exists a small enough
neighborhood of for which , so this point
cannot be an extreme point. To this end, notice that for the
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simplex boundary points, the ML exponent is zero. There-
fore, the only extreme point is , which corresponds to

. Now the power fractions are just

and the QMM weights are

VI. COMPARISON WITH THE GLRT

As we have mentioned, the GLRT is a member of the family
from which the proposed QMM decoder of Section IV was

selected. However, this fact does not guarantee that the latter
outperforms the GLRT in the minimax sense, since it is subop-
timal and does not necessarily attain the maximal value of over
the family . Nevertheless, we have the following result.

Theorem 5: For the OFDM setting, the QMM decoder of
Section IV attains a guaranteed fraction of the ML exponent
that is equal or higher than the one attained by the GLRT.

Proof: The proof outline is as follows. First, we find an
upper bound on the pairwise power error exponent of the GLRT.
Then, we use it to upper-bound , the guaranteed fraction
of the ML exponent attained by the GLRT. Finally, we show that
this upper bound is smaller than or equal to the lower bound for

attained by the QMM decoder.
Using (9), and defining the per-band normalized codewords

by

the pairwise separation surface equation of the GLRT can be
written as

(39)

A more restricting constraint is the per-band constraint

(40)

Therefore, the minimal distance of the codewords from the set
given in (40) is an upper bound to the true minimal distance.
Since the constraints given in (40) for each band are indepen-
dent, we can find the minimal distance in each band separately.

That is, for each band we seek a point of minimal distance to
each of the codewords, under the corresponding constraint. In-
stead of solving a constrained optimization problem, we take
a geometric approach and observe that the constraint (40) is
equivalent to the equal distance constraint

(41)

A point satisfying (41) is a point whose distance to the first nor-
malized codeword is equal to its distance to the second normal-
ized codeword or to its opposite. Therefore, in each band such a
point has to be either on the line bisecting the angle between
the two normalized codewords in that band (in the subspace
spanned by the two normalized codewords), or on an orthogonal
line (in the same subspace). Accordingly, the point must sat-
isfy either of the conditions

(42)

for some . For each of the possibilities, we seek a constant
so that the distance to the codeword is minimal. The distance
from codeword to points satisfying (42) with a plus sign is

(43)

The minimum is attained for and the corre-
sponding distance is

Similarly, the minimal distance for a point satisfying (42) with
a minus sign is

and therefore the minimal distance for codeword in this band
is

Combining the per-band minimal distances, we end up with an
upper bound for the true pairwise minimal distance from the
separation surface
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So finally the power error exponent of the GLRT can be upper-
bounded by

(44)
The preceding bound can be shown to be tight, by using the
method of Section IV and providing a lower bound that coin-
cides with it. However, we shall not dwell on this point, as it
does not contribute to our arguments.

Using (44), we can upper-bound

(45)

Now, we remind the reader of the lower bound for the power
error exponent found for the family of quadratic decoders
from which the suboptimal QMM decoder was selected, given
in (23)

Fortunately, this bound has a structure very similar to the bound
in (44), and if one sets for all of the pairs , , the bounds
coincide for all fading values. Precisely, denote by the
quadratic decoder obtained by using weights all equal to one,
then we have

However, the suboptimal QMM decoder uses the weights
given in Proposition 1, which are guaranteed to maximize the
the lower bound for . The guaranteed fraction attained by the
suboptimal QMM can be lower-bounded as follows:

(46)

Finally, combining (45) and (46) gives the desired result

VII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
QMM decoder for various selections of codebooks, in terms of
the fraction of the ML exponent attained over randomly selected
channels. The QMM performance will be compared to that of
the GLRT and to the training-ML decoder.

A. The Coding Scheme

In order to allow universal decoding, the codebook used has
to be structured so that all codewords are distinguishable under
different fading values, meaning that there are no two different
fading values, which makes two different codewords coincide.

We have further required that no pair of codewords is colinear
in any of the OFDM bands, which is justified by noticing that
colinearity in a band makes it useless in terms of deciding
between the two codewords. This constraint on the codebook
makes it difficult to use ordered constellations and algebraic
coding, since that may result in many colinearities, and there-
fore many of the codewords would have to be eliminated in
order to make the code robust for fading. To overcome this
problem, we have employed a coding scheme for which almost
no colinearity occurs. This scheme is based on the complex
field coding (CFC) scheme suggested for Rayleigh-fading
OFDM channels [24]. CFC is basically linear precoding with
redundancy, and we have used it in a slightly different manner
which is now described.

An encoder for a OFDM channel is defined by a set
of matrices , each of dimensions , where

. The input to the encoder at time point is an -dimen-
sional column vector , whose components are normally taken
from some constellation. This vector is multiplied by the ma-
trix , and the resulting -dimensional vector is trans-
mitted over the bands at time point . A codeword is therefore
an matrix of consecutive transmissions, and the total
number of codewords is determined by the number of different
combinations of consecutive input vectors. Effectively, one
cannot allow all possible input combinations since that might
result in colinearity, so some of the possible codewords cannot
be used and have to be eliminated. For instance, using ,

, and a -PAM constellation, there are possible code-
words, but at least half of those are eliminated, because they
have antipodal counterparts.

Since the encoder is entirely defined by the matrices , se-
lecting them requires some consideration. Usually, we require
each matrix to have orthonormal columns, so that the matrix
multiplication retains power. Moreover, we choose the matrices
so that the resulting number of ML extreme points is low, so
that the weight’s calculation is faster. In the following sections,
different CFC codes were used for performance evaluation. It
is stressed thought, that any other coding scheme may be used
instead, provided that the codebook does not violate the colin-
earity constraint. Moreover, if colinearity does happen to occur
for some pair of codewords in some band, the observation in
that band may be disregarded when making the pairwise deci-
sion, and so QMM decoding is practically applicable for any
selection of a codebook.

B. QMM Versus GLRT

A CFC code over a real OFDM channel was used to
evaluate the performance of the proposed QMM decoder and
of the GLRT. We used a CFC code with and a -PAM
constellations at the input which gives 256 possible codewords,
but due to the colinearity constraint only 120 were used. Dif-
ferent channel realizations were used by randomly generating
the fading values, and the symbol error rate was estimated by
simulation for each realization for the QMM, GLRT, and ML
decoder (the latter tuned to the channel). The corresponding esti-
mations of the power error exponents were derived, and the frac-
tions of the ML exponent attained by each decoder were found.
In estimating the power error exponents, the receiver SNR for
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Fig. 2. QMM versus GLRT, 120 codewords CFC, 3 � 4 channel.

the realized channels was increased until the error probability’s
exponential behavior became practically constant. Fig. 2 depicts
the results of the described simulations. The horizontal axis rep-
resents random channel realizations, and the vertical axis repre-
sents the attained fraction for the QMM and the GLRT. As can
be seen, the QMM’s worst case fraction over this random set
of channels is approximately , while the GLRT’s is around

. Surprisingly, the QMM seems to outperform the GLRT
uniformly, and not only in the worst case performance, which
was not guaranteed, and is not true in general. Many simula-
tions employing randomly selected CFC codes have exhibited
the same behavior where the QMM uniformly outperforms the
GLRT over the randomly selected channels.

C. QMM Versus Training Sequence Approach

A CFC code was used in conjunction with training
symbols in order to evaluate the performance of the proposed
QMM decoder, the GLRT, and the training-ML decoder. Both

and real OFDM channels were used, where the
CFC codewords occupy only the last three time points, and the
first time points contain constant training symbols. When em-
ploying the training-ML decoder, an ML estimate of the fading
is found using these symbols, and the estimate is then used as
the true fading for a standard ML decoding. The QMM and the
GLRT consider the training symbols as an integral part of the
codeword, and the corresponding decoding schemes apply. No-
tice that adding training symbols makes it inherently impossible
for colinearity to exist in any of the bands, no matter the original

codebook, and therefore makes the modified codebook more ro-
bust for fading and better suited for universal decoding.

The simulation results using random channel realizations for
both settings are depicted in Figs. 3 and 4. As can be observed,
the suboptimal QMM decoder outperforms both the GLRT and
the training-ML decoder in the worst case performance. In the

channel, the superiority of the QMM seemed to be uni-
form (which was not guaranteed).

VIII. SUMMARY AND FUTURE RESEARCH

In this paper, we have considered the problem of universal
decoding for an unknown frequency-selective fading channel,
using an OFDM signaling scheme, and a block-fading model.
We have presented the minimax criterion which, for a given
codebook, seeks a decoder guaranteeing the highest fraction
of the ML power error exponent uniformly over all fading
values, out of a given family of decoders. Specifically, we were
interested in families of quadratic decoders, defined as decoders
for which the pairwise decision rule can be represented using
a quadratic form, and the optimal decoder selected from a
family of quadratic decoders was termed the QMM decoder
for thatfamily. A specific family of well-structured quadratic
decoders was selected and most of our efforts were dedicated
to exploring the minimax decoding problem for that family.

The problem of explicitly determining the QMM decoder for
the family turned out to be difficult, as the power error expo-
nent has no analytical solution in general. Nevertheless, a lower
bound on the power error exponent has been derived, and it was
further shown that considering a family of decoders
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Fig. 3. QMM versus GLRT and ML-training, 28 codewords CFC, 3 � 4 channel, one training symbol per block.

Fig. 4. QMM versus GLRT and ML-training, 28 codewords CFC, 3 � 5 channel, two training symbols per block.

whose pairwise components each depends on a single weight
parameter, is possible without any loss of generality. Using

the lower bound, a suboptimal QMM decoder was explicitly
derived, as the decoder maximizing the corresponding lower
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bound for (the guaranteed fraction of the ML exponent) over
the family. A procedure for finding the optimal weights was
described, as well as the decoding scheme that follows, and the
corresponding (maximal) lower bound was given explicitly. A
minor modification of the weights determining procedure was
also presented, covering the interesting case where the fading
coefficients are known not to be entirely independent but rather
to satisfy some general linear inequality constraints.

The complexity of the suggested QMM decoder is compa-
rable to that of the GLRT, with the exceptions of the offline ef-
fort for computing the weights, and of memory issues resulting
from storing them. Online computation of the weights was sug-
gested as means of reducing the memory consumption when the
number of extreme points of the ML exponent is relatively low.

Despite the suboptimality of the proposed QMM decoder, it
was shown to attain a higher fraction than that attained by
the GLRT, thus outperforming it in the minimax sense. Simula-
tions performed over randomly selected channels and different
codebooks verified the superiority of the QMM decoder over the
GLRT and the commonly used training sequence approach.

Although the QMM decoder has a complexity comparable to
that of the GLRT, it is still unsatisfactory for practical applica-
tions, as it requires going over all the codewords. Therefore, a
possible direction for future research would be exploring effi-
cient QMM decoding methods, possibly suboptimal methods.
One idea may be using convolutional codes and running a
QMM-based Viterbi algorithm, where the metrics are modified
appropriately.

Universal codes may be explored by means of finding con-
ditions on the codebook or seeking specific codes so that the
QMM decoder has good performance relative to the ML de-
coder. Notice thought, that the QMM attaining a high value of
for some codebook does not necessarily guarantee the absolute
performance of the code to be good at all.

The QMM decoder for the constrained fading case takes into
account only a subset of the set of possible channels, and there-
fore is guaranteed to have a higher value of than that attained
by the QMM decoder for the unconstrained fading case, over
those channels. The behavior of as a function of the constraint
set can be investigated. It would be interesting to see whether
there exists a “large” constraint set for which the value of
is significantly improved, or even approaches one, which will
make the corresponding QMM decoder optimal for “almost” all
channels.

In most of our simulations, the QMM decoder seemed to uni-
formly outperform the GLRT. This property is not true in gen-
eral, and simple counterexamples can be constructed in which
the GLRT is better than the QMM for some channels and worse
for others (although the QMM still wins in the worst case). Nev-
ertheless, it may be interesting to seek general conditions on the
codebook for this property to hold.

The QMM decoder was derived from a minimax optimality
criterion. Still, it may be insightful to investigate its perfor-
mance under commonly used statistical fading models, such as
the Rayleigh or the Rician models, and compare its performance
to decoders derived under these statistical assumptions, in terms
of diversity gain for instance.

Finally, notice that by considering general matrices instead
of diagonal ones, our channel model becomes a model for an
unknown multiple-input multiple-output (MIMO) channel. An
interesting direction for future research would be extending the
results of this work and find a (possibly suboptimal) QMM de-
coder for the MIMO setting.

APPENDIX

Proof of Theorem 1

Let be any symmetric matrix describing a pair-
wise decoder with a separation surface
and let be the subspace spanned by codewords and in all
of the bands, i.e., the minimal subspace containing each of the
two codewords undergoing all possible fading scenarios. Now,
let be the projection of a point onto the subspace , and
let be its projection onto the orthogonal complementary
subspace . Then for any value of the fading vector with
a corresponding matrix representation , the distance of code-
word from the separation surface can be bounded as follows:

(47)

A similar derivation is true for codeword , and we thus see that
the minimal distance of the decoder is upper-bounded by the
minimal distance from the separation surface within the sub-
space . To this end, we now show that there exists another
decoder of the required form, whose minimal distance equals
this bound for all fading values.

Define the diagonal matrix

...
...

...
. . .

...

It is easy to verify that is a projection matrix and

Now, express the matrix as

and define a new matrix

(48)

which is exactly in the required form. The matrix describes a
decision rule of a pairwise decoder with a separation surface

satisfying
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and thus for any value of the fading vector and a corresponding
matrix representation , the distance of codeword from the
separation surface is

(49)

and a similar derivation is true for codeword . It is now straight-
forward from (47) and (49) that indeed the new decoder
represented by the matrix in (48), achieves the upper bound
for the decoder represented by the matrix , for all fading
values.

Proof of Theorem 2

In order to determine the condition number, we need to find
the minimal and maximal singular values of . Note that
scaling of has no effect on the condition number, so we will
assume with no loss of generality that the matrix lower bound
of is equal to one, and try to minimize the matrix norm
under this constraint. Since the matrix is block diagonal and

is diagonal, the matrices are also block diagonal, with
the same structure as . Denote by the matrix cor-
responding to , extracted from the diagonal of . Similarly,
denote by the corresponding matrix extracted from the diag-
onal of . We then have

and the singular values of are just the union of the singular
values , for . is given by the block-
wise relation

and its singular values are the square roots of the eigenvalues
of . Specifically, see the equation at the bottom of the
page. The eigenvalues of this matrix are merely those of the

matrix on the top left, and the rest of the elements on
the diagonal. Note that the matrices are independent,
and therefore the eigenvalues optimization can be performed
separately for each matrix.

Since we have assumed that the matrix lower bound of
is equal to one, it is only natural to set all lower values
on the diagonal to one, since we cannot set any of them to be

lower than one, and there is no reason to set them to any value
higher if one is to minimize the matrix norm. All that is left
now is to minimize the maximal eigenvalue of the matrix
in the upper left corner, under the constraint that the minimal
eigenvalue is equal to one.

The two eigenvalues of the matrix are the roots of the
second-degree polynomial

Defining , , and , the eigen-
values , are the roots of

(50)

The minimal eigenvalue is then forced to be equal to one

(51)

under this constraint, the maximal eigenvalue is

Rearranging the terms in (51) we end up with a more compact
constraint

(52)

We now find , to minimize the , under the constraint (52),
and under additional inequality constrains that guarantee that ,

are nonnegative and that the resulting is indeed the larger
eigenvalue

s.t. (53)

Noticing that none of the inequality conditions are active, it is
easily verified the the solution to (53) is given by

...
...

...
. . .

...

...
...

...
. . .

...
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and by substituting

we end up with the desired result.

Proof of Theorem 3

Let be some diagonal matrix with diagonal elements ,
used to represent the pairwise decoder . Using Theorem 1,
we can assume without any loss of generality, that
for any . We also require the resulting pairwise decoder

to satisfy the detectability (4) condi-
tion. Specifically, a necessary and sufficient condition for de-
tectability of codeword is

Writing the condition explicitly gives

(54)

A similar condition for detectability of codeword is

(55)

Finally, the necessary and sufficient conditions for the de-
tectability property of are given by

(56)

Returning to the optimization problem (22) and taking the
derivative of the Lagrangian, we get

where is the Lagrange multiplier. We immediately get
for , and we further have the following equations:

.

Due to the constraint, the coefficients in the equations with a
zero right-hand side cannot all vanish together. Therefore, for
some we have

and by substituting that into the equations for we get

We now lack the values of . Notice that if , then
the corresponding must be zero. So until now we have

,

o.w.

denote by the set of indices for which . Using
the constraint we get

so finally

(57)

Returning to the distance expression, and using (57) we get

The pairwise modified distance is therefore given by

(58)

and a similar derivation results in

(59)

Now, setting all equal to uniformly increases
, while not affecting . Similarly, setting all

equal to uniformly increases , while not
affecting . We therefore conclude that we can restrict
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ourselves to decoders for which are all equal to some (pos-
itive) value for all , and are all equal to
some (negative) value , without any loss in performance.
However, since our decoder is insensitive to scaling of the
matrix , we can assume that and for some

, and the first claim in the theorem is proved.
Finally, using the above selection of the matrix and substi-

tuting the optimal values of given in Theorem 2 into (58) and
(59), we get

Notice that the expression for can be attained from
simply by using a weight instead of , and swapping indices

. This manifests the fact that selecting for the decoder
implicitly defines for the decoder .

Proof of Theorem 4

The ML power error exponent as a function of the new coor-
dinates is given by

(60)

where

(61)

We see that is a minima of a set of affine functions
(hyperplanes), and therefore it is concave. Furthermore, its do-
main (the simplex ) is a polyhedra, and therefore is a
polyhedral function over , since its graph can be represented
by a set of linear inequality constraints. The same is true for

, as it is of a similar structure.
The critical channels are the points attaining the infimum in

For any , define the function

over the set , with as a parameter. We have

with equality only for the critical channels. Therefore, the global
minima points of over are the critical channels. Since

is a difference of two polyhedral functions, it is easily
verified to be a polyhedral function itself. In addition, since
is closed and bounded, the global minima of over is
attained on at least one of its extreme points, which are a subset
of the union of the extreme points of and . There-
fore, we conclude that the extreme points of and
over contain at least one critical channel. To this end, we now
show that the extreme points of over can never be crit-
ical channels.

Assume that some point is a minima of , and
assume it is an extreme point of but not of . Since

is not an extreme point of , there exists a line segment
going through the point , corresponding to in

, that is fully embedded in . This line seg-
ment in turn corresponds to some direction emanating from

, along which satisfies

some constant , and for any small enough.
Now, since is an extreme point of , the line segment

above is not fully embedded in graph , and therefore there
exist two constants so that

for any small enough. Since is also concave, we also
have .

Finally, since we have assumed that is a minima of ,
then should be nondecreasing in any direction emanating
from . Specifically, for the direction , we have

for any small enough, and so it is compulsory that
. On the other hand

for any small enough, and so we have ,
which contradicts . Therefore, is not a minima of

for any , let alone for . Consequently, cannot
be a critical channel.

Proof of Proposition 1

For any selection of the weights , the lower bound
can be divided into minimizations of pairs

The left expression in the inner minima is decreasing with
and the right one is increasing with it, so the inside minima
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attains its maximal value when the two expression are equal,
that is, for the selection

Therefore, we can write

To this end, we see that for any selection of weights , the
weights result in a bound at least as good as the bound at-
tained by , and therefore, they maximize the bound.
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